El Método de la transformada de Laplace es un método operacional que puede usarse para resolver ecuaciones diferenciales lineales. Con el uso de la transformada de Laplace muchas funciones sinusoidales y exponenciales, se pueden convertir en funciones algebraicas de una variable compleja s, y reemplazar operaciones como la diferenciación y la integración, por operaciones algebraicas en el plano complejo.
Definimos: f(t) = una función de tiempo t tal que f(t) = 0 para t > 0. Sea f(t) definida en ( 0,¥). Se define la transformada de Laplace de f(t), como la función [f(t)] = F(s), definida por la integral.
s = una variable compleja. El parámetro s se considerará real. Es esto suficiente para las aplicaciones con ecuaciones diferenciales lineales de coeficientes constantes y algunas de coeficientes variables. En otros casos es necesario trabajar en el campo complejo, considerando a s como complejo.
L = un símbolo operacional que indica que la cantidad a la que precede debe transformarse por la integral de Laplace
F(s) = transformada de Laplace de f(t)
La transformada de Laplace de una función f(t) existe si la integral de Laplace converge. La integral ha de converger si f(t) es seccionalmente continua en todo intervalo finito dentro del rango t > 0 y si es de orden exponencial cuando t tiende a infinito.
Se dice que una función es seccionalmente continua o continua a trazos en un intervalo de “infinito” <= t <= “beta” si es posible partir del intervalo en un número finito de subintervalos de tal manera que la función sea continua en cada uno de ellos y tenga límites a izquierda y derecha.
No hay comentarios:
Publicar un comentario